Akamoto Performance
Home Who Are We Fitters & Refill Stations Resources Links Contact Us Racing Info Credit Cards Accpeted
 
 
Product Range
Nitrous Oxide Systems
Exhaust Flamers
Driving Experiences
Air Induction Kits
E-Ram Superchargers
Alloy Wheels
Performance Exhausts
Universal Back Boxes
Universal Tailpipes
Site Navigation
Shopping Basket
Checkout
Street Racing
Sitemap
Genral Nitrous Oxide Info
Advantages of Nitrous
Nitrous Components
fast laughs
History of nitrous
Nitrogen gas
Nitrous at the dentists
Nitrous description
Nitrous in a nutshell
Wet and dry nitrous
What is torque
Nitrous oxide
Horsepower
Hp and torque explained
Nitrous cam shaft
Nitrous head mods
Nitrous sources
Nitrous misunderstood
Nitrous timeline
Nitrous uses
Torque versus power
What is horsepower
Power and torque
Resources
Turbo Charging
Super Charging
Camshafts
K&N Air Filter
Spark Plugs
Exhaust Knowledge
Fitting Spark Plugs
Brake Systems
Changing Oil
Changing a battery
Bleeding Brakes
Changing Shock Absorbers
 
 

 

TURBO CHARGING

A turbo can significantly boost an engine's horsepower without significantly increasing its weight, and that is the huge benefit that makes turbos so popular!

Turbochargers are a type of forced induction system. They compress the air flowing into the engine. The advantage of compressing the air is that it lets the engine squeeze more air into a cylinder. More air means that more fuel can be added. therefore, you get more power from each explosion in each cylinder. A turbocharged engine produces more power overall than the same engine without the charging, which can significantly improve the power-to-weight ratio for the engine.

In order to achieve this boost, the turbocharger uses the exhaust flow from the engine to spin a turbine, which in turn spins an air pump. The turbine in the turbocharger spins at speeds up to 150,000 rotations per minute (RPM) -- that's about 30 times faster than most car engines can go. And since it is hooked up to the exhaust, the temperatures in the turbine are also very high

Basics
One of the surest ways to get more power out of an engine is to increase the amount of air and fuel that it can burn. One way to do this is to add cylinders or make the cylinders bigger. Sometimes these changes may not be feasible -- a turbo can be a simpler, more compact way to add power, especially for an after market accessory.

TurboTurbochargers allow an engine to burn more fuel and air by packing more into the existing cylinders. The typical boost provided by a turbocharger is 6 to 8 pounds per square inch (PSI). Since normal atmospheric pressure is 14.7 PSI at sea level, you can see that you are getting about 50 percent more air into the engine. Therefore, you would expect to get 50 percent more power. It's not perfectly efficient, so you might get a 30 to 40 percent improvement instead.

One cause of the inefficiency comes from the fact that the power to spin the turbine is not free. Having a turbine in the exhaust flow increases the restriction in the exhaust. This means that on the exhaust stroke, the engine has to push against a higher back-pressure. This effectively subtracts a little bit of power from the cylinders that are firing at the same time.

The turbocharger also helps at high altitudes where the air is less dense. Normal engines will experience reduced power at high altitudes because for each stroke of the piston the engine will get a smaller mass of air. A turbocharged engine may also have reduced power, but the reduction will be less dramatic because the thinner air is easier for the turbocharger to pump.

Older cars with carburetors automatically increase the fuel rate to match the increased airflow going into the cylinders. Modern cars with fuel injection will also do this to a point. The fuel-injection system relies on oxygen sensors in the exhaust to determine if the air-to-fuel ratio is correct, so these systems will automatically increase the fuel flow if a turbo is added to a car with fuel injection.

If a turbocharger with too much boost is added to a fuel-injected car, the system may not provide enough fuel -- either the software programmed into the controller will not allow it, or the pump and injectors are not capable of supplying it. In this case, other modifications will have to be made to get the maximum benefit from the turbocharger.

View our Electirc Turbocharger here

How It Works
The turbocharger is bolted to the exhaust manifold of the engine. The exhaust from the cylinders spins the turbine, which works like a gas turbine engine. The turbine is connected by a shaft to the compressor, which is located between the air filter and the intake manifold. The compressor pressurizes the air going into the pistons. The exhaust from the cylinders passes through the turbine blades, causing it to spin. The more exhaust that goes through the blades, the faster they spin.

On the other end of the shaft that the turbine is attached to, the compressor pumps air into the cylinders. The compressor is a type of centrifugal pump; it draws air in at the centre of its blades and flings it outward as it spins.

In order to handle speeds of up to 150,000 RPM, the turbine shaft has to be supported very carefully. Most bearings would explode at speeds like this, so most turbochargers use a fluid bearing. This type of bearing supports the shaft on a thin layer of oil that is constantly pumped around the shaft. This serves two purposes: It cools the shaft and some of the other turbocharger parts; and it allows the shaft to spin without much friction.

There are many tradeoffs involved in designing a turbocharger for an engine.

Design Considerations
Before we talk about the design tradeoffs, we need to talk about a some of the possible problems with turbochargers that the designers must take into account.

Too Much Boost
With air being pumped into the cylinders under pressure by the turbocharger, and then being further compressed by the piston There is more danger of knock. Knocking happens because as you compress air, the temperature of the air increases. The temperature may increase enough to ignite the fuel before the spark plug fires. Cars with turbochargers often need to run on higher octane fuel to avoid knock. If the boost pressure is really high, the compression ratio of the engine may have to be reduced to avoid knocking.

Turbo Lag
One of the main problems with turbochargers is that they do not provide an immediate power boost when you step on the gas. It takes a second for the turbine to get up to speed before boost is produced. This results in a feeling of lag when you step on the gas, and then the car lunges ahead when the turbo gets moving.

One way to improve turbo lag is to reduce the inertia of the rotating parts, mainly by reducing their weight. This allows the turbine and compressor to accelerate quickly, and start providing boost earlier.

Small vs. Large Turbocharger
One sure way to reduce the inertia of the turbine and compressor is to make it smaller. A small turbocharger will provide boost more quickly and at lower engine speeds, but may not be able to provide much boost at higher engine speeds when a really large volume of air is going into the engine. It is also in danger of spinning too fast at higher engine speeds, when lots of exhaust is passing through the turbine.

A large turbocharger can provide lots of boost at high engine speeds, but may have bad turbo lag because of how long it takes to accelerate its heavier turbine and compressor.

The Wastegate
Most automotive turbochargers have a wastegate, which allows the use of a smaller turbocharger to reduce lag while preventing it from spinning too fast at high engine speeds. The wastegate is a valve that allows the exhaust to bypass the turbine blades. The wastegate senses the boost pressure. If the pressure gets too high, it could be an indicator that the turbine is spinning too fast, so the wastegate bypasses some of the exhaust around the turbine blades, allowing the blades to slow down.

Ball Bearings
Some turbochargers use ball bearings instead of fluid bearings to support the turbine shaft. But these are not your regular ball bearings -- they are super precise bearings made of advanced materials to handle the speeds and temperatures of the turbocharger. They allow the turbine shaft to spin with less friction than the fluid bearings used in most turbochargers. They also allow a slightly smaller, lighter shaft to be used. This helps the turbocharger accelerate more quickly, further reducing turbo lag.

Ceramic Turbine Blades
Ceramic turbine blades are lighter than the steel blades used in most turbochargers. Again, this allows the turbine to spin up to speed faster, which reduces turbo lag.

Sequential Turbochargers
Some engines use two turbochargers of different sizes. The smaller one spins up to speed very quickly, reducing lag, while the bigger one takes over at higher engine speeds to provide more boost.

Intercoolers
When air is compressed, it heats up; and when air heats up, it expands. So some of the pressure increase from a turbocharger is the result of heating the air before it goes into the engine. In order to increase the power of the engine, the goal is to get more air molecules into the cylinder, not necessarily more air pressure.

An intercooler or charge air cooler is an additional component that looks something like a radiator, except air passes through the inside as well as the outside of the intercooler. The intake air passes through sealed passageways inside the cooler, while cooler air from outside is blown across fins by the engine cooling fan.

The intercooler further increases the power of the engine by cooling the pressurized air coming out of the compressor before it goes into the engine. This means that if the turbocharger is operating at 7 PSI boost, the inter cooled system will put in 7 PSI of cooler air, which is denser and contains more air molecules than warmer air

 

© Copyright 2001 - 2009 Akamoto.co.uk All rights reserved - Website design and maintenance by Dualmedia.co.uk a Web design and Search engine marketing company: